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Abstract

This paper gives an asymptotic analysis of the sound and vibration produced when a metal plate, which
could be part of the hull of a ship, is forced into motion by its contact with vibrating machinery on one side,
and radiates sound into water on the other side. The frequency range is that for which the water
significantly affects the vibration of the plate. The mathematical method used is scaling of the frequency
with the square of the intrinsic fluid-loading parameter to maximise the number of terms in the dispersion
relation which balance at leading order. This ‘significant’ scaling, which gives accurate results over a wide
frequency range, is used to obtain scaling laws for all aspects of the acoustic field and plate vibration,
including the sizes of the different parts of the near field, the amount of radiated acoustic energy, and the
amount of energy propagating in the surface wave. The results extend a previous asymptotic theory of
heavy fluid loading, valid only in a restricted part of the frequency range covered by significant loading.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This work concerns the classical problem of a metal plate forced into motion by its contact with
vibrating machinery on one side, and radiating sound into a fluid, taken to be water, on the other
see front matter r 2005 Elsevier Ltd. All rights reserved.
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side. The metal plate might be part of the hull of a ship. The frequency range to be considered is
that for which, in the surface wave which propagates along the plate and in the neighbouring fluid,
the inertia of both the fluid and the plate need to be taken into account. Thus, the fluid loading is
heavy enough to affect significantly the magnitude and phase speed of the surface wave, but not so
heavy that the inertia of the plate is negligible. Accordingly, the frequency range produces neither
light nor heavy fluid loading, but significant fluid loading [1]. This frequency range is of
considerable importance in practice. For example, a steel plate, of thickness 2 cm, with water on
one side, is in the regime of significant fluid loading for a very wide range of frequencies around
200Hz. Nevertheless, the literature does not contain a systematic account, with the emphasis on
orders of magnitude and scaling laws, of results obtainable for the forced vibration of a plate
under significant fluid loading. Even so comprehensive a writer on fluid loading as D.G. Crighton,
who clearly identified the regime of significant fluid loading, nevertheless gave results only for
light fluid loading and heavy fluid loading (e.g. Refs. [1,2]).
The effects of greatest interest in the problem are the sound field radiated directly into the fluid

from the forcing region, and the surface wave propagating in the plate and neighbouring fluid.
These effects are analysed in detail, both with regard to their numerical values and also the way in
which these numerical values are determined by scaling laws. In particular, the scaling law for the
energy flow in the surface wave is of fundamental importance in practice, since this energy flow,
enormously greater than that in the directly radiated sound field, is available for conversion into
sound at plate junctions and at inhomogeneities, e.g. at struts.
The basic variables in the problem are reducible to the dimensionless frequency O; the

dimensionless wavenumber K, and the intrinsic fluid-loading parameter �; also dimensionless,
defined by

O ¼
oh=cB

ðc0=cBÞ
2
; K ¼

kh

c0=cB

; � ¼
r0=r
c0=cB

: ð1Þ

Here o is the frequency, k is the wavenumber, h is the thickness of the plate, r0 is the density of
the fluid, r is the density of the plate, c0 is the sound speed of the fluid, and cB is the bending-wave
characteristic speed defined by the equation E0 ¼ rc2B; where E0 ¼ E=f12ð1� n2Þg and E, n are
Young’s modulus and Poisson’s ratio of the plate. The parameter �; a coupling parameter between
the fluid and plate, was defined originally by Gutin [3] and independently by Nayak [4]. For steel
in water, r0=r ’ 0:128; c0=cB ’ 0:952; and � ’ 0:134: In his series of papers on fluid-loading
problems, culminating in the 1988 Rayleigh medal lecture and a textbook exposition, Crighton
[1,2,5] came to advocate the systematic use of � in perturbation expansions, not only because of its
convenient smallness but also because of its independence of frequency. Thus, regimes may be
identified by the powers of � to which they correspond.
As observed by Crighton [1], and as elucidated below in Section 3.1, the regime in which O is of

order �2 is special, in that the maximum possible number of terms in the dispersion relation then
have the same order of magnitude in � and can be balanced at leading order. This maximum
number of terms is four, and the balanced terms correspond to plate stiffness, plate inertia, fluid
inertia, and fluid pressure at the surface of the plate, so that the only negligible physical quantity is
the fluid compressibility. Such a regime, in which a power of a small parameter has been selected to
balance as many terms in an equation as possible at leading order, is called a significant regime (or
distinguished regime, or preferred regime). For a significant regime, truncated series expansions in a
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small parameter are far more accurate, and have a far wider range of validity, than they do for a
non-significant regime. This is only to be expected, because a significant regime retains the
maximum number of physical processes for which an expansion in a small parameter is possible. In
this paper, the regime in which O is of order �2 is called the regime of significant fluid loading. As
noted earlier, the regime is of considerable importance in practice, i.e. the four physical quantities
retained are indeed important simultaneously in a practically important frequency range.
The above remarks show that it is natural to define a reduced frequency O0 by O ¼ O0�2; so that

significant fluid loading corresponds formally to O0 of order one. Then significant fluid loading
problems may be analysed by means of expansions in powers of � at fixed O0: Note from (Eq. 1) that

O0 ¼
oh=cB

ðr0=rÞ
2
: ð2Þ

Thus the reduced frequency O0 is independent of c0; the speed of sound in the fluid, corresponding to
the fact that, for significant loading, the fluid in the surface wave is effectively incompressible, i.e. has
negligible potential energy. Heavy loading corresponds to O5�2; i.e. O051; or ‘low frequency’, and
light loading corresponds to Ob�2; i.e. O0b1; or ‘high frequency’. In heavy loading, the physical
quantities retained at leading order are plate stiffness, fluid inertia, and pressure at the plate surface;
i.e. plate inertia has become negligible. In light loading, the leading order quantities are plate stiffness
and plate inertia only; i.e. the fluid motion and pressure have become ‘slaves’ to the motion of the
plate.
In the literature, the term ‘fluid loading parameter’ is used in different senses, for example to

refer to O�1=2
0 or O�1

0 in the notation used here. In either sense, significant fluid loading
corresponds to an order-one value of this fluid loading parameter, and heavy fluid loading
corresponds to a high value of this parameter. The key idea exploited in the present paper is that
even when this parameter is of order one, a perturbation series approach is still available and
valuable because of the smallness of the intrinsic fluid loading parameter �: Another use of the
term fluid loading parameter has been to mean 1=ð�O0Þ: Unfortunately, this use does not
correspond to a rational scaling, as the effect of fluid loading on the plate vibration is negligible
when �O0 is of order one.
The structure of the paper is as follows. In Section 2, the governing equations for forced

vibration are solved for the velocity potential, acoustic pressure, and plate displacement, and the
solution is expressed in a form ideal for numerical computation. Typical numerical results are
presented. The rest of the paper derives scaling laws: in Section 3 for the dispersion relation and its
zeros; in Section 4 for the surface wave, especially its pressure field, plate displacement, and energy
flow; in Section 5 for the acoustic field, including its energy flow and the energy budget for the
whole problem; and in Section 6 for the inner near field. Conclusions are presented in Section 7.
2. Governing equations and their solution

2.1. Governing equations

A stationary compressible fluid of density r0 and sound speed c0 occupies the half-space y40 in
a Cartesian coordinate system ðx; y; zÞ: The boundary of the half-space is a thin elastic plate of
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density (per unit volume) r; Young’s modulus E, Poisson’s ratio n; and thickness h; the plate
occupies the layer �hoyo0: The half-space yo� h contains fluid of negligible density compared
with r0; which is ignored henceforth. The lower surface y ¼ �h of the plate is forced by a pressure
distribution independent of z, but otherwise an arbitrary function of time t and position x,
denoted f ðt; xÞ: The geometry of the problem, in the dimensionless variables defined below in the
last paragraph of Section 2.2, is shown in Fig. 1. The acoustic velocity of the fluid is u ¼ ðu; v; 0Þ;
representable by a potential fðt;x; yÞ as u ¼ rf; so that, with subscripts denoting differentiation,
u ¼ fx and v ¼ fy: The acoustic pressure p in the fluid is p ¼ �r0ft:
The displacement Zðt;xÞ of the plate is assumed to satisfy the bending-wave equation [6, pp.

236–239, 250–255]; [7, pp. 17–20, 253–257]. This equation has coefficients depending on r; h, and
the bending-wave characteristic speed cB defined in Section 1. The boundary-value problem to be
solved is

c�20 ftt � fxx � fyy ¼ 0 ðy40Þ; ð3Þ
Fig. 1. Contours of the real part of the scaled acoustic pressure P, satisfying Eqs. (19)–(20), for � ¼ 0:134 and O0 ¼ 1;
i.e. O ¼ 0:0180; thus the frequency is 0.0180 of the coincidence frequency oc ¼ ðc0=cBÞ

2cB=h: Contour levels of P are

from 
0:01 to 
0:1 in steps of 0:01: The radius of the acoustic near-field scales with the wavelength of the acoustic wave
radiating into the fluid; embedded in this near field is a much smaller inner near field, which scales with the wavelength

of the surface wave, propagating next to the plate. In the original dimensional variables, these wavelengths are of order

c0=o and ðr0=rÞðcB=oÞ; the latter independent of c0; in scaled dimensionless variables, used in the plot, the wavelengths
are of order ��2 and ��1:



ARTICLE IN PRESS

C.J. Chapman, S.V. Sorokin / Journal of Sound and Vibration 281 (2005) 719–741 723
rhZtt þ rc2Bh3Zxxxx ¼ r0ft þ f ðt;xÞ ðy ¼ 0Þ; ð4Þ

Zt ¼ fy ðy ¼ 0Þ: ð5Þ

Here r0ft is the coupling between the fluid and the plate, i.e. �pðt;x; 0Þ: The approximate
boundary condition (5) represents continuity of velocity normal to the mean plate boundary
y ¼ 0; similarly, in (4) the forcing f ðt;xÞ is placed on this boundary y ¼ 0 rather than on y ¼ �h:
Eqs. (3)–(5) will later be supplemented by radiation and causality conditions. Differentiation of
(Eq. 4) with respect to t, followed by substitution of Zt ¼ fy from (Eq. 5), gives the boundary
condition on y ¼ 0 in terms of f alone as

r0ftt � rhftty � rc2Bh3fxxxxy ¼ �f t ðy ¼ 0Þ: ð6Þ

2.2. Velocity potential

Eqs. (3)–(6) may be solved for f by taking Fourier transforms in t and x. Frequency is
represented by o; and wavenumber conjugate to x by k. Fourier transforms, represented by
capital letters, are defined according to the convention

F ¼ Fðo; k; yÞ ¼
Z 1

�1

Z 1

�1

fðt; x; yÞeiðot�kxÞ dxdt; ð7Þ

f ¼ fðt;x; yÞ ¼
1

4p2

Z 1

�1

Z 1

�1

Fðo; k; yÞe�iðot�kxÞ dk do: ð8Þ

For f to represent a causal solution to (3)–(6), the o contour in the inversion integral (8) must lie
above all singularities in the complex o plane. Real and imaginary parts of a complex variable are
denoted by subscripts r and i, so that, for example, o ¼ or þ ioi: The variables t, x, and y are
always real.
Subsequent formulae involve the complex quantity g defined in terms of the complex variables

o and k by g ¼ gðo; kÞ ¼ ðk2
� ðo=c0Þ

2
Þ
1=2: The branch of the square root is chosen so that gr40

when k is real and oi is small and positive. The Fourier transform of the wave equation (3) is
Fyy � g2F ¼ 0: Since F cannot grow exponentially as y ! 1; the relevant solution of this
equation is proportional to e�gy: The solution Fmay thus be written in terms of a function Aðo; kÞ
as F ¼ Aðo; kÞe�gy: If the Fourier transform of f ðt;xÞ is denoted F ðo; kÞ; the Fourier transform of
the boundary condition (6) gives

Aðo; kÞ ¼
�ioF ðo; kÞ

r0o2 þ ðrho2 � rc2Bh3k4
Þgðo; kÞ

: ð9Þ

Hence (Eq. 8) gives

f ¼ �
i

4p2

Z 1

�1

Z 1

�1

oFðo; kÞe�iðot�kxÞ�gðo;kÞy

r0o2 þ ðrho2 � rc2Bh3k4
Þgðo; kÞ

dk do: ð10Þ

Ambiguities arising from poles on a real contour of integration are resolved by giving o in the
integrand a small positive imaginary part. Differentiation of (Eq. 10) with respect to ðt;x; yÞ
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corresponds to multiplication of the integrand by ð�io; ik;�gÞ; and reciprocally for integration.
Thus, ðp; u; v; ZÞ are obtained from (Eq. 10) by multiplying F by ðir0o; ik;�g;�io�1gÞ; the last of
these evaluated on y ¼ 0:
The dimensionless frequency O; the dimensionless wavenumber K, and the intrinsic fluid

loading parameter � were defined in (Eq. 1). In terms of the coincidence frequency oc and the
coincidence wavenumber kc; defined by

oc ¼ ðc0=cBÞ
2cB=h; kc ¼ ðc0=cBÞ=h; ð11a;bÞ

the dimensional frequency and wavenumber are o ¼ ocO; k ¼ kcK : The dimensionless version of
g is G ¼ ðK2 � O2Þ

1=2; so that g ¼ kcG: Dimensionless time T and lengths X ;Y are T ¼ oct and
X ¼ kcx; Y ¼ kcy: Then by (Eq. 10) the potential f is

f ¼ �
i

4p2
1

rh

Z 1

�1

Z 1

�1

OFðocO; kcKÞe�iðOT�KX Þ�GðO;KÞY

�O2 þ ðO2 � K4ÞðK2 � O2Þ
1=2

dK dO: ð12Þ

A steel plate of thickness 2 cm in water has oc ¼ 7:14� 104 rad s�1 and kc ¼ 47:6 radm�1;
corresponding to 11:4 kHz and wavelength 13:2 cm: Thus frequencies of interest in practice are
much less than oc; and indeed the simple bending-wave equation (4) becomes invalid as the
coincidence frequency is approached.

2.3. Pressure

The acoustic pressure p is obtained from the potential f as described after (Eq. 10), i.e. by
multiplying F by ir0o: It is convenient henceforth to use polar coordinates ðR; yÞ defined by
ðX ;Y Þ ¼ ðR cos y;R sin yÞ; and to change the wavenumber variable of integration K to an angle w;
which may be complex, defined as a root of K ¼ O cos w: The root is chosen by specifying a
contour of integration in the w plane and taking G ¼ ðK2 � O2Þ

1=2
¼ �iO sin w: The resulting

contour, called a Sommerfeld contour, is of a type widely used in wave theory and in Bessel-
function asymptotics; see, for example, Figs. 5.7 and 6.7 in [8, pp. 238, 267], and Figs. 5.13 and
5.14 in [9, pp. 623, 630], together with their accompanying text. Use of w eliminates branch points
and branch lines from all integrals; i.e. w is a natural coordinate for specifying position on the two-
sheeted Riemann surface covering the K plane. Thus the acoustic pressure is

p ¼ �
1

4p2
r0c

2
0

rcBh2

Z 1

�1

Oe�iOT

Z
C

FðocO; kcO cos wÞ
Dð�;O; wÞ

eiOR cosðy�wÞ sin wdwdO; ð13Þ

where

Dð�;O; wÞ ¼ �� iOð1� O2cos4wÞ sin w: ð14Þ

The roots w of the dispersion relation Dð�;O; wÞ ¼ 0 give poles in the integrand of (Eq. 13). In the
strip of interest in the w plane, consisting of all w for which � 1

2
ppwro 3

2
p; there are ten poles,

because the dispersion relation is a quintic in sin w; and each of the five roots sin w gives two values
of w: In Fig. 2 the five poles in the upper half of the w plane are labelled wu1; . . . ; wu5; and the five
poles in the lower half of the w plane are labelled wl1; . . . ; wl5: The numbering is chosen to increase
from left to right. If the O integration in (Eq. 13) is performed last, the allowed w contours C
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Fig. 2. Poles w ¼ wu1; . . . ; wl5 in contour integrals with respect to w; for � ¼ 0:134 and O0 ¼ 1; i.e. O ¼ 0:0180; the poles
are the roots w of the dispersion relation Dð�;O; wÞ ¼ 0: For each observation angle y there is a saddle point on the real w
axis at w ¼ y; and a corresponding steepest-descent path through w ¼ y: The curves labelled yu1; . . . ; yl5 are the steepest-
descent paths which pass through the poles w ¼ wu1; . . . ; wl5; corresponding to saddle points on the real w-axis at

w ¼ yu1; . . . ; yl5: The curves labelled 0; p are the steepest-descent paths for y ¼ 0;p: The original contour of integration is
C0; indented as shown around the poles wu2; wl4:
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depend on O: The O contour lies above all singularities in the O plane. When O is real and
positive, the simplest allowed w contour is that marked C0 in Fig. 1; this contour runs from p� i1
to i1 and is piecewise linear, except for an indentation to the right around the pole wu2; which
always lies on wr ¼ 0; and an indentation to the left around the pole wl4; which always lies on
wr ¼ p: The contourC0 corresponds in the K plane to the indented real K-axis. Contours for other
values of O are obtained by analytic continuation from C0; as described in Ref. [10]. For example,
when O is real and negative, the simplest allowed contour is the reflection of C0 about the line
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wr ¼
1
2
p; the dispersion relation Dð�;O; wÞ ¼ 0 implies that if O is real then a change to �O

transforms the poles to their complex conjugates.
The term eiOR cosðy�wÞ in the w integral in (Eq. 13) has a saddle point at w ¼ y; through which runs

a steepest-descent path in the w plane. For the moment it will be assumed that O is real and
positive, so that the steepest-descent path does not depend on O and may be denoted CðyÞ: The
extension to other O is straightforward. The equation of CðyÞ is cosðy� wrÞ cosh wi ¼ 1; i.e.

wi ¼ sgnðy� wrÞ cosh
�1
ðsecðy� wrÞÞ ðy� 1

2
powroyþ 1

2
pÞ ð15Þ

or

wr ¼ y� sgnðwiÞ cos
�1ðsech wiÞ ð�1owio1Þ: ð16Þ

Here cosh�1 and cos�1 indicate principal values. Variation of y translates CðyÞ horizontally in the
w plane. The path CðyÞ extends from w ¼ yþ 1

2
p� i1 to w ¼ y� 1

2
pþ i1; as shown in Fig. 2,

which gives plots of CðyÞ for several values of y:
An extremely rapid numerical method of evaluating the w integral in (Eq. 13) is to deform the

original contour C0 on to the steepest-descent contour CðyÞ: Then the value of the integral is the
sum of (i) residue contributions from poles crossed in the deformation; and (ii) the contour
integral over CðyÞ: For example, in Fig. 2 the deformation of C0 onto Cð0Þ crosses, in order, the
poles wu2; wl3; wu1; and similarly, the deformation of C0 onto CðpÞ crosses the poles wl4; wu3; wl5:
Numerical evaluation of the contour integral is almost instantaneous because of the decay of the
integrand away from w ¼ y: Evaluation of the residue contributions requires a method for
determining, as a function of y; the poles which are crossed between C0 and CðyÞ: Such a method is
the following. Let yðwÞ denote the value of y for which the steepest-descent path CðyÞ passes
through the point w: Thus yðwÞ is a real-valued function defined in the w plane; its level lines are the
curves CðyÞ: By (Eq. 16),

yðwÞ ¼ wr þ sgnðwiÞ cos
�1ðsech wiÞ: ð17Þ

The ten poles wu1; . . . ; wl5 determine ten angles yðwu1Þ; . . . ; yðwl5Þ; which will be denoted yu1; . . . ; yl5:
Symmetries are yl5 ¼ p� yu1; yl4 ¼ p� yu2; etc. As y varies from 0 to p; the poles are cut on or cut
off at those angles yu1; . . . ; yl5 which lie in the range 0 to p: Thus in a numerical code the cut on/cut
off is accounted for by multiplying each residue contribution by plus or minus a Heaviside unit
step function with argument plus or minus y� yu1; . . . ; the signs are determined from Fig. 2 by the
fact that wu1; wu2; wl1; wl2; wl3 lie to the left of the original contour C0; whereas wu3; wu4; wu5; wl4; wl5 lie
to the right.
For definiteness, attention will henceforth be confined to point forcing at a fixed frequency.

Thus in terms of a reference pressure p0; a reference length a, and an arbitrary real positive
frequency o0; the forcing pressure on the plate is taken to be f ðt;xÞ ¼ p0dðx=aÞe�io

0t: Then,
F ðo; kÞ ¼ 2pap0dðo� o0Þ; so that, with o0 ¼ ocO0;

F ðocO; kcO cos wÞ ¼ 2pap0o
�1
c dðO� O0Þ: ð18Þ

Evaluation of the O integral in (Eq. 13), followed by dropping of the dash on O0; and then
expression in terms of the reduced frequency O0 by means of O ¼ �2O0; gives the acoustic pressure
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in the form

p ¼
r0
r

a

h
p0e

�i�2O0T P; ð19Þ

where

P ¼ Pð�;O0;R; yÞ ¼ �
�O0

2p

Z
C0

ei�
2O0R cosðy�wÞ

D0ð�;O0; wÞ
sin wdw ð20Þ

and

D0ð�;O0; wÞ ¼ 1� i�O0ð1� �4O2
0cos

4wÞ sin w: ð21Þ

It is convenient to refer to P as ‘the pressure,’ since by (Eq. 19) it gives a dimensionless form of p
when T is zero or a multiple of 2p=ð�2O0Þ: Deformation of C0 on to the steepest-descent contour
C ¼ CðyÞ; as just described, decomposes P into a contribution from poles, Ppoles; and a
contribution from the steepest-descent integral, Psteep: Thus

P ¼ Ppoles þ Psteep: ð22Þ

In numerical evaluation of Psteep; the variable of integration may be taken to be wr: On CðyÞ;
(Eq. 15) gives

w ¼ wr þ i sgnðy� wrÞ cosh
�1
ðsecðy� wrÞÞ; dw ¼ ð1� i secðy� wrÞÞdwr; ð23a;bÞ

so that

Psteep ¼
�O0

2p

Z yþð1=2Þp

y�ð1=2Þp

ei�
2O0R cosðy�wÞ

D0ð�;O0; wÞ
sin w ð1� i secðy� wrÞÞdwr: ð24Þ

Here w is the function of wr given by Eq. (23a), and the sign change between Eqs. (20) and (24)
occurs because the direction of C0 is from yþ 1

2
p to y� 1

2
p: Other useful ways of writing the

integral for Psteep are given in Appendix A.
Numerical evaluation of Ppoles and Psteep; and hence of P, was performed as described above for

many values of � and O0; and the results were examined as contour plots of the real and imaginary
parts Pr and Pi in the ðX ;Y Þ plane. A typical result is shown in Fig. 1, which gives a contour plot
of Pr for � ¼ 0:134 and O0 ¼ 1; i.e. O ¼ 0:0180: Thus, the frequency is 0.0180 of the coincidence
frequency oc ¼ ðc0=cBÞ

2cB=h: The figure shows vividly the large-amplitude surface wave
propagating near the plate away from the forcing point ðX ;Y Þ ¼ ð0; 0Þ; and the much smaller
amplitude sound wave propagating into the fluid away from this point. The surface wave
propagating to the right, i.e. for X40; is described by the contribution to Ppoles from the pole
w ¼ wu2; the surface wave propagating to the left, i.e. for Xo0; is described by the contribution
from the pole w ¼ wl4; and the sound wave, including its near field (but excluding the inner near
field), is described by Psteep: The sound field outside of the near field, i.e. for R greater than about
100 in the figure, is described by the saddle-point approximation to Psteep; for which the saddle
point is at w ¼ y: The inner near field, i.e. the region where R is less than about 10 in the figure,
requires for its description not only Psteep without approximation but also the contribution to
Ppoles from the surface-wave poles wu2; wl4 and the evanescent-wave poles wu1; wu3; wl3; wl5: Thus in
the frequency range of interest the only quantities which nowhere affect the field are the ‘irrelevant
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poles’wu4; wu5; wl1; wl2; lying well outside the curved strip of the w plane swept by the steepest-descent
contours CðyÞ for 0pypp:

2.4. Plate displacement

The plate displacement Z is obtained from the velocity potential j as described after (Eq. 10),
i.e. by multiplying F ðo; kÞ by �io�1gðo; kÞ and evaluating the resulting integral corresponding to
(Eq. 10) on y ¼ 0; i.e. on y ¼ 0; p: For the single-frequency forcing introduced in Section 2.3, this
gives

Z ¼
p0
r0c

2
0

cB

c0
ae�i�

2O0T W ; ð25Þ

where

W ¼ W ð�;O0;R; yÞ ¼ �
i

2p�

Z
C0

ei�
2O0R cosðy�wÞ

D0ð�;O0; wÞ
sin2wdw ðy ¼ 0;pÞ: ð26Þ

For convenience, W will also be referred to as the displacement. Expression (26) extended to the
range 0oyop gives the analytical continuation of W above the X-axis; although this continuation
is not needed, the use of ðR; yÞ instead of X is helpful in making the formulae similar to those for
the pressure. Thus as before, the contour C0 is deformed onto the steepest-descent contour CðyÞ;
to give a decomposition of W into a contribution from poles, Wpoles; and a contribution from the
steepest-descent integral, W steep: Hence,

W ¼ W poles þ W steep: ð27Þ

Analogously to (Eq. 24),

W steep ¼ �
i

2p�

Z yþð1=2Þp

y�ð1=2Þp

ei�
2O0R cosðy�wÞ

D0ð�;O0; wÞ
sin2w ð1� i secðy� wrÞÞdwr ðy ¼ 0; pÞ; ð28Þ

where w is the function of wr given by Eq. (23a). Numerical evaluation of Wpoles and W steep; and
hence of W, are rapidly performed as described in Section 2.3.

2.5. Numerical calculation and scaling laws

From a numerical point of view, the problem set in Section 2.1 may be regarded as completely
solved. The pressure field, the plate displacement, and all other dependent variables are rapidly
computed by the method above. However, the main aim of this paper is to give scaling laws, in the
frequency range of significant fluid loading, to explain and expand upon the numerical results.
For example, a quantity of great practical importance is the energy flux in the surface wave, since
this energy flux, far greater than the acoustic energy radiated directly from the forcing region, is
available for scattering into sound at inhomogeneities and struts in the plate. A basic task is to
determine the power of � in the leading term of a series expansion of each needed quantity, for
example Ppoles and Psteep; and to provide a method of calculating the order-one factor which
multiplies this power of �: The dependence of the important quantities, e.g. the above energy flux,
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on the many parameters in the problem is readily obtained. Accordingly, the scaling of all
formulae will now be determined. A scaling aspect already apparent in Fig. 1 is the disparity
between the small wavelength of the surface wave and the large wavelength of the radiated sound;
their ratio is of order �:
3. Dispersion relation, scalings, and poles

3.1. The dispersion relation and its scaling

In dimensionless variables ðO;KÞ; the dispersion relation for problem (3)–(5) is

�O2 þ ðO2 � K4ÞðK2 � O2Þ
1=2

¼ 0: ð29Þ

This is obtained by equating to zero the denominator of the integrand in (Eq. 12). The most
important consequence of (Eq. 29) is the dependence on � and O of its roots K in the complex
plane. A perturbation approach will be adopted, since �51 in applications. The first stage is to
find the dominant balances: thus, the exponents ðm; nÞ in an assumed scaling O � �m; K � �n are
chosen so that at leading order the maximum number of terms in (Eq. 29) have the same order of
magnitude. This gives ðm; nÞ ¼ ð2; 1Þ; ð0; 0Þ: Expansions based on ðm; nÞ ¼ ð0; 0Þ become non-
uniform when ðO;KÞ approach the coincidence values ð1; 1Þ; hence, a further dominant balance
exists of the form O� 1 � �r; K � 1 � �s: This gives ðr; sÞ ¼ ð2

3
; 2
3
Þ: Balances of these three types,

but with the emphasis on membranes rather than plates, were first identified in Ref. [11]. As
discussed in Section 1, a scaling based on a leading-order balance of the maximum possible
number of terms in an equation is called a significant scaling (or distinguished scaling, or preferred
scaling), and leads to approximations accurate over a far wider range of parameter values than
approximations based on a non-significant scaling. Moreover, all results arising from a non-
significant scaling are obtainable from a significant scaling by taking an appropriate limit, but not
vice versa.
This paper is concerned only with the balance ðm; nÞ ¼ ð2; 1Þ; i.e. O � �2; K � �; since, as stated

above, applications relate to O51: A suitable expansion of solutions of the dispersion relation
(29) is

O ¼ �2O0; K ¼ �K0 þ �3K1 þ � � � : ð30a;bÞ

Here O0 is the reduced frequency, as defined in Section 1. From (Eq. 30b), it is natural to define a
reduced wavenumber by 1 K=�; which by (Eq. 1) is kh=ðr0=rÞ in dimensional variables. Solutions
of the dispersion relation for significant fluid loading have their reduced wavenumber of order one
and are approximately independent of the speed of sound c0 in the fluid. In (Eq. 30a,b) and
henceforth, subscripted variables such as O0; K0; K1 (and later w1; w2) are dimensionless and of
order one. Thus, the order of magnitude of all calculated quantities, such as pressure,
displacement, and energy flow, is evident from the leading power of �; and numerical detail is
provided by the order-one relationships between O0; K0; K1; etc. The primary task of this paper is
to provide this numerical detail by calculating the dependence of all quantities on the reduced
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frequency O0: Thus, substitution of (Eq. 30a,b) into (Eq. 29) and collection of powers of � leads to

K5
0 � O2

0K0 � O2
0 ¼ 0; K1 ¼ 


O2
0

2K0ð4K0 
 5Þ
: ð31a;bÞ

Eq. (31a) determines ten roots K0 as functions of O0; then Eq. (31b) gives the ten corresponding
values of K1 as functions of O0: Both square roots in (Eq. 29) are allowed, in order to encompass
the whole of the Riemann surface for K, and the relevant roots of Eq. (31a) are selected when the
contour of integration is deformed. The relationship of Eqs. (30a,b), (31) to the heavy fluid
loading limit is discussed in Appendix B.
In the variables O; w; the dispersion relation may be written Dð�;O; wÞ ¼ 0; with the dispersion

function Dð�;O; wÞ given by (Eq. 14). When O ¼ �2O0; it is convenient to use the scaled dispersion
function D0ð�;O0; wÞ defined by D ¼ �D0; so that D0ð�;O0; wÞ is given by (Eq. 21) and the
dispersion relation is equivalent to D0ð�;O0; wÞ ¼ 0: Since cos w ¼ K=O; expansion (30a,b) shows
that the roots w of the dispersion relation satisfy cos w ’ ��1K0=O0: Hence, w ¼


i lnð2��1K0=O0Þ þOð�2Þ; so that wi ’ 
 lnð��1Þ and wr is of order one. The sign of wi will be
indicated by means of the indicator variable s � sgnðwiÞ ¼ 
1: Then a suitable expansion of
solutions of the dispersion relation is

w ¼ is lnð��1Þ þ w0 þ �2w2 þ � � � : ð32Þ

Substitution of (Eq. 32) into the dispersion relation D0ð�;O0; wÞ ¼ 0; or transformation of Eq. (31),
gives

O3
0e

�5isw0 � 16O0e
�isw0 � 32s ¼ 0; w2 ¼ ise�2isw0

1þ 3
16
O2
0e

�4isw0

1� 5
16
O2
0e

�4isw0
: ð33a;bÞ

It is shown in Appendix B that the limit O051 leads to the non-significant approximation K5
0 ’


O2
0: The corresponding approximation obtained from Eq. (33) is e�5isw0 ’ 32sO�3

0 because
e�isw0 ¼ 2K0=O0:

3.2. Poles

In the vertical strip � 1
2
ppwro 3

2
p; Eqs. (32)–(33) determine ten values of w; five for s ¼ 1; i.e.

wi40; and five for s ¼ �1; i.e. wio0: These are the poles wu1; . . . ; wu5 and wl1; . . . ; wl5 defined in
Section 2.3 and shown in Fig. 2 for � ¼ 0:134; O0 ¼ 1: On the scale of Fig. 2, the approximate
positions is lnð��1Þ þ w0 with w0 from Eq. (33a) are indistinguishable from the exact positions
obtained from Dð�;O; wÞ ¼ 0: The symmetry of this equation, or of D0ð�;O0; wÞ ¼ 0; is discussed in
Appendix C.
Tracks of the poles as O increases from 0.0002 to 2, i.e. as O0 increases from 0.0111 to 111, are

shown in Fig. 3. The coincidence frequency O ¼ 1 corresponds to O0 ¼ 55:8: If the exact positions
of the poles shown in Fig. 3 are compared with the approximate positions is lnð1=�Þ þ w0; where w0
is obtained from Eq. (33a), it is found that Eq. (33a) locates the important poles
wu1; wu2; wu3; wl3; wl4; wl5 accurately for frequencies up to about O ¼ 0:5; i.e. O0 ¼ 27:8: Thus the
significant approximation is useful remarkably close to the coincidence frequency, even though
formally it is introduced for much lower frequencies. This is the usual situation when a significant
approximation is used. The six important poles wu1; . . . ; wl5 in Fig. 3 move smoothly towards the
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Fig. 3. Tracks of the poles w ¼ wu1; . . . ; wl5 for � ¼ 0:134 as O varies from 0.0002 to 2, i.e. as O0 varies from 0.0111 to

111; cf. Fig. 2 for O ¼ 0:0180; i.e. O0 ¼ 1: The poles wu1; wl5 cross the steepest-descent curves for y ¼ 0; p when

O ¼ 0:0258; i.e. O0 ¼ 1:436:
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real axis as O0 increases. The unimportant poles wu4; wu5 coalesce on the line wr ¼ p when O0 ¼ 4:2;
and they remain on this line, but distinct, until O0 ¼ 33; when they coalesce again and leave the
line on opposite sides, and similarly for the unimportant poles wl1; wl2 in relation to the imaginary
axis wr ¼ 0: The poles wu4; wu5; wl1;wl2 are not relevant to this paper, because in the frequency range
of interest they are not crossed during deformations of the contour of integration, and are not
close to the saddle point of the integrand.
Series expansions for y ¼ yu1; . . . ; yl5; at which the poles cut on or cut off, are obtained by

substituting into Eq. (17) expansion (32) for the poles. The result is

y ¼ 1
2
psþ w0r � 2s�e�sw0i þ �2w2r þ � � � : ð34Þ
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Here w0; w2 satisfy Eq. (33), i.e. correspond to any of the ten poles; for each pole, Eq. (34) gives a
function of O0: The dependence of y ¼ yu1; . . . ; yl5 on O in the range 0:002pOp2; i.e.
0:111pO0p111; is plotted in Fig. 4, obtained by substituting the roots w of the dispersion relation
Dð�;O; wÞ ¼ 0 into Eq. (17). If the exact curves shown in Fig. 4 are compared with the approximate
curves 1

2
psþ w0r � 2s�e�sw0i ; where w0 is obtained from Eq. (33a), it is found that the

approximations to the important curves yu1; yu2; yu3; yl3; yl4; yl5 are accurate for frequencies up
to about O ¼ 0:5; i.e. O0 ¼ 27:8: The curves in Fig. 4 may be checked against the tracks of
wu1; . . . ; wl5 in Fig. 3. At O0 ¼ 1:436; i.e. O ¼ 0:0258; calculation shows that yu1 ¼ 0 and yl5 ¼ p;
i.e. wu1 is on Cð0Þ and wl5 is on CðpÞ: In the parameter range of interest in this paper, i.e. O ¼ O0�2

with � ¼ 0:134 and O0 of order one, the above results imply that for O041:436 the poles wu1; wl5
are not cut on for any y in the relevant range 0pypp:
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Fig. 4. Observation angles yu1; . . . ; yl5 at which the poles cut on or cut off, i.e. at which the steepest-descent paths pass

through the poles wu1; . . . ; wl5: The figure is for � ¼ 0:134 and O from 0.002 to 2, i.e. O0 from 0:111 to 111; cf. Figs. 2 and
3. At O ¼ 0:0258; i.e. O0 ¼ 1:436; the curves yu1; yl5 pass through the values 0; p; i.e. wu1 is then on Cð0Þ; and wl5 is on
CðpÞ:
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4. The surface wave

4.1. Pressure field in the surface wave

The surface wave travelling to the right in Fig. 1 is represented by the pole wu2 in Fig. 2. The
contribution of this pole to the pressure P will be denoted Pu2: It will now be shown that

Pu2 ’ �
iO0e

ð1=2Þ�O0ð�YþiX Þew0i

2ð2O0 þ 5e�w0iÞ
Hðyu2 � yÞ; ð35Þ

where

yu2 ¼
1
2
p� 2�e�w0i þ Oð�3Þ ð36Þ

and H denotes the Heaviside step function, which takes the value 0 for negative argument and 1
for positive argument. In formulae such as Eqs. (35)–(36) for pole contributions, quantities based
on the variable w are always assumed to be evaluated at the appropriate pole. Thus w0i is a
function of O0 only, determined by Eq. (33a) with s ¼ 1: Since the pole w ¼ wu2 is on the
imaginary axis, expansion (32)–(33) is applied with wr ¼ 0; w0r ¼ 0; w2r ¼ 0; . . . ; i.e. w ¼ iwi; w0 ¼
iw0i; w2 ¼ iw2i; . . . :
Expression (35) for Pu2 is obtained from integral (20) for P as follows. Let Pþ denote the

contribution to Eq. (20) from a small circuit around a pole w; where the superscript þ indicates
that the circuit is taken anti-clockwise. Residue calculus gives

Pþ ¼ �i�O0
ei�

2O0R cosðy�wÞ

D0
0ð�;O0; wÞ

sin w: ð37Þ

Here the dash on D0
0 indicates differentiation with respect to w; so that from Eq. (21),

D0
0ð�;O0; wÞ ¼ �i�O0f1� �4O2

0ð1� 6 sin2wþ 5 sin4wÞg cos w: ð38Þ

The terms in Eq. (37) may be expanded in powers of � by means of Eq. (32). Thus

sin w ¼ 1
2
is��1e�isw0f1� �2ðe2isw0 þ isw2Þ þ Oð�4Þg; ð39Þ

cos w ¼ 1
2
s��1e�isw0f1þ �2ðe2isw0 � isw2Þ þ Oð�4Þg; ð40Þ

cosðy� wÞ ¼ 1
2
��1eisðy�w0Þf1þ �2ðe�2isðy�w0Þ � isw2Þ þ Oð�4Þg; ð41Þ

D0
0ð�;O0; wÞ ¼ ið2O0e

�isw0 þ 5sÞ þ Oð�2Þ: ð42Þ

Hence, the leading-order approximation to Eq. (37) is

PþðwÞ ’ �
isO0e

C

2ð2O0 þ 5seisw0Þ
; ð43Þ

where the exponent C is

C ¼ 1
2
�O0Re

sw0if�s sinðy� w0rÞ þ i cosðy� w0rÞg ð44Þ

¼ 1
2
�O0e

sw0ifsðX sin w0r � Y cos w0rÞ þ iðX cos w0r þ Y sin w0rÞg: ð45Þ



ARTICLE IN PRESS

(a) (b)

Fig. 5. Contours of the pressure field corresponding to (a) the surface wave Pu2; and (b) the evanescent waves Pu1;Pl3;
corresponding to the poles wu2; wu1; wl3: Contours for zero pressure are labelled 0. The cut-off lines are OAu2;OAu1;OAl3;
at angles yu2; yu1; yl3 to the OX-axis, and the arrows u2; u1; l3 show the direction of phase propagation. In (b), the

contours of Pu1 are solid lines, and the contours of Pl3 are these solid lines and their extensions as dashed lines, together

with the straight dashed line labelled 0. Compare [12, p. 471, Fig. 5.3.8b].
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Thus Eq. (43) represents an inhomogeneous plane wave with exponential decay of amplitude in
the direction ð�s sin w0r; s cos w0rÞ; and phase propagation in the perpendicular direction
ðcos w0r; sin w0rÞ; recall that �

1
2 ppw0ro 3

2 p: Expression (35) for Pu2 follows from Eqs. (43) and
(45) with s ¼ 1 and w0r ¼ 0; the Heaviside term Hðyu2 � yÞ in Eq. (35) describes the fact, evident in
Fig. 2, that in the deformation from C0 to Cð0Þ the pole wu2 is cut on when yoyu2 and cut off when
y4yu2: Expression (36) for yu2 follows from Eq. (34) with s ¼ 1; w0r ¼ 0; and w2r ¼ 0: The
continuity of P ¼ Ppoles þ Psteep; despite discontinuities in Ppoles and Psteep individually, is
discussed in Appendix D.
Contours of the surface-wave pressure field Pu2 are shown in Fig. 5a. The cut-off angle yu2 is

XÔAu2; and so contours are not shown to the left of the cut-off line OAu2: From Eq. (35), the
dimensionless wavelength of the surface wave is 4p=ð�O0e

w0iÞ; and the dimensionless penetration
depth, i.e. the e-fold distance, is 2=ð�O0e

w0iÞ: These are each of order ��1; because O0 is formally of
order one in the expansion scheme. In dimensional variables, obtained from X ¼ kcx; Y ¼ kcy;
and from the definitions of � and O0; the wavelength is 4pðr0=rÞðcB=oÞe�w0i and the penetration
depth is 2ðr0=rÞðcB=oÞe�w0i : Here e�w0i depends algebraically, not exponentially, on O0; because
Eq. (33a) is a polynomial in e�w0i ; not in w0i: From the definition O0 ¼ ðoh=cBÞ=ðr0=rÞ

2; it follows
that the scaling law for the wavelength and the penetration depth is that each has the functional
form ðr0=rÞðcB=oÞfnððoh=cBÞ=ðr0=rÞ

2
Þ: The speed of sound c0 is absent here, because at leading

order the surface wave is incompressible.
4.2. Plate displacement in the surface wave

The plate displacement in the surface wave travelling to the right in Fig. 1 is given by the
contribution of the pole wu2 to the contour integral (26) for W, evaluated for y ¼ 0; R ¼ X : The
contribution will be denoted W u2; identical theory to that in Section 4.1 for the pressure field
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shows that

W u2 ¼
i

4�3
ew0i

2O0 þ 5e�w0i
e
1
2i�O0Rew0i : ð46Þ

Here w0i is the same function of O0 as in Section 4.1. The quantity Wþ corresponding to Pþ in Eq.
(37) is

Wþ ¼
1

�

ei�
2O0R cosðy�wÞ

D0
0ð�;O0; wÞ

sin2w ðy ¼ 0; pÞ; ð47Þ

and the approximation for Wþ corresponding to that for Pþ is

Wþ ’
i

4�3
e�isw0eC

2O0 þ 5seisw0
: ð48Þ

Here C is given by Eqs. (44)–(45), with y ¼ 0; p in Eq. (44), and with Y ¼ 0 in Eq. (45).
Expression (46) for W u2 follows from Eq. (48) with s ¼ 1 and w0r ¼ 0:
In formulae for energy flow it is convenient to consider a slab of arbitrary width b in the z-

direction, for example, consisting of the fluid and the plate within the region 0pzpb: Then
formulae for rate of energy flow have dimensions energy per unit time, because the formulae
contain a factor b. A standard calculation, based on Eq. (19) for p and on Eq. (35) for Pu2; shows
that, in such a slab of width b, the fluid in the surface wave travelling to the right transports energy
at a rate

1

16�

p20a
2b

rc0h

O0

ð2O0 þ 5e�w0iÞ
2
þ Oð�Þ: ð49Þ

A similar calculation, based on Eq. (25) for Z and on Eq. (46) for W u2; shows that the associated
bending wave in the plate transports energy at a rate

1

8�

p20a
2b

rc0h

O0ðO0e
w0i þ 2Þ

ð2O0 þ 5e�w0iÞ
2
þ Oð�Þ: ð50Þ

The total rate of energy flow in the surface wave travelling to the right is the sum of Eqs. (49) and
(50), i.e.

1

16�

p20a
2b

rc0h

O0e
w0i

2O0 þ 5e�w0i
þ Oð�Þ: ð51Þ

The surface wave travelling to the left, corresponding to the pole wl4; gives identical values to Eqs.
(49)–(51), so that the total rate of energy transported by the surface waves is twice (51).
The ratio of Eq. (49) to Eq. (50) is 2O0e

w0i þ 4; or 8O�3
0 e�5w0i by means of dispersion relation

(33a). This ratio is of order one, i.e. in the surface wave comparable amounts of energy are
transported by the fluid and the plate. When O0 ! 0; the dispersion relation shows that the ratio
tends to one-quarter.
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5. The acoustic field and the energy budget

5.1. Far acoustic field

The acoustic field propagating away from the origin in Fig. 1 is represented by the integral Psteep

evaluated on the steepest-descent contour CðyÞ; as described in Section 2.3 and Appendix A. The
far acoustic field, which begins at R of order ��2; is given by the saddle-point contribution Psaddle

to Psteep: A calculation based on Eq. (24) or Eq. (A.4) shows that

Psaddle ¼
e�pi=4

21=2p1=2
O0 sin y

D0ð�;O0; yÞ
1þ

1� �4O2
0

�R sin y

� �
ei�

2O0R

ðO0RÞ
1=2

: ð52Þ

The second term in brackets is needed when sin y is of order ð�RÞ
�1 or smaller, i.e. YpOð��1Þ; and

describes the ‘Lloyd’s mirror’ effect, which is that for grazing angles to the plate the acoustic
field decays as R�3=2; not R�1=2: Since D0ð�;O0; yÞ ¼ 1 when y ¼ 0; p; the grazing-angle limit of
Eq. (52) is

Psaddle ¼
e�pi=4

21=2p1=2
O2
0

�
ð1� �4O2

0Þ
ei�

2O0R

ðO0RÞ
3=2

: ð53Þ

The pressure field (53) produces a plate displacement given by the saddle-point contribution
W saddle to W steep: A calculation based on Eq. (28) or Eq. (A.7) shows that

W saddle ¼
e�pi=4

21=2p1=2
1� �4O2

0

�4
ei�

2O0R

ðO0RÞ
3=2

: ð54Þ

In the derivation of Eqs. (52)–(54) the condition �51 has not been used, and so the expressions
remain valid up to � of order one. When �51; the terms �4O2

0 may be ignored.

5.2. Energy flow in the acoustic field

A calculation based on Eq. (19) for p and on Eq. (52) for Psaddle shows that in a slab of width b

in the z-direction the acoustic field radiates energy at a rate

�

2p
p20a

2b

rc0h
O0

Z ð1=2Þp

0

sin2wdw

1þ �2O2
0ð1� �2O2

0 cos
4wÞ2 sin2w

: ð55Þ
5.3. Energy budget

The forcing f ðt; xÞ ¼ p0dðx=aÞei�
2O0T produces a power input Ein; in a width b in the

z-direction, of

Ein ¼ Re 1
2
b

Z 1

�1

f �Zt dx ¼ 1
2
�2O0

p20a
2b

rc0h
W ijR¼0: ð56Þ
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Here W ijR¼0 is the imaginary part of Eq. (26), evaluated at R ¼ 0: If the contour C0 in Eq. (26) is
deformed on to the rectilinear path from 1

2 p� i1 to � 1
2 pþ i1 via 1

2 p and � 1
2 p; the total

contribution from the vertical sections vanishes. The symmetry in w then gives

Ein ¼
�

2p
p20a

2b

rc0h
O0

Z ð1=2Þp

0

sin2wdw

1þ �2O2
0ð1� �2O2

0cos
4wÞ2sin2w

þ
1

8�

p20a
2b

rc0h

O0e
w0i

2O0 þ 5e�w0i
þ � � � : ð57Þ

The first term here is obtained by combining the integrals from � 1
2
p to 0 and from 0 to 1

2
p; the

second term, to be evaluated at wu2; is all that remains of the pole contributions, because the
contributions from wu1 and wl3 cancel out. The first term on the right of Eq. (57) is the rate of
acoustic energy radiation, Eq. (55), and the second term is the total rate of energy transport by the
surface wave to the left and the surface wave to the right, i.e. twice Eq. (51). Thus Eq. (57) is the
energy-budget relation, equating the power input to the power output. The ratio of the acoustic
radiation to the surface-wave energy transport is of order �2:
6. The inner near field

The inner near field extends from the origin R ¼ 0 out to R of order ��1: In this region the
evanescent waves, represented by the poles wu1; wu3; wl3; wl5; have the same order of magnitude as
the surface waves and of the steepest-descent contribution to the field. Thus the inner near field
requires for its description all six important poles, namely wu1; wu2; wu3; wl3; wl4; wl5; and also the
integral Psteep or W steep; no further simplification or approximation is available. The evanescent
waves Pu1 and Pl3; to the right of the origin, are shown in Fig. 5b. Simple expressions for Pu1 and
Pl3 are obtained from Eqs. (43)–(45) evaluated at wu1 and wl3; for example, Pu1 ¼ Hðyu1 � yÞPþ

u1:
The field Pl3 differs from Pu1 only in that the phase propagates in the opposite direction and the
cut-off line OAl3 is slightly above OAu1: Below OAu1; the sum of the fields Pu1 and Pl3 is the
standing wave 2Re ðPu1Þ; i.e.

Pu1 þ Pl3 ’
O0

j2O0 þ 5eiw0 j
expf�1

2
�O0Re

w0i sinðy� w0rÞg

� cosf�a0 þ 1
2
�O0Re

w0i cosðy� w0rÞg; ð58Þ

in which w0 is evaluated at wu1; and a0 is the phase of 2O0 þ 5eiw0 : Since O0 is formally of order one,
the exponential term in Eq. (58) shows that the evanescent waves are negligible when �R is greater
than order one, i.e. when R is greater than order ��1; this fact defines the inner near field as
extending to R of order ��1:
Similar remarks apply to the plate displacement. The evanescent waves to the right of

the origin are represented by poles wu1 and wl3; the sum of the corresponding dis-
placements being W u1 þ W l3 ¼ Hðyu1ÞW

þ
u1 þ Wþ

l3; by Eqs. (47)–(48). When yu140; the sum is
2ReðWþ

u1Þ:
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7. Conclusion

It has been seen that the forced vibration of an elastic plate under significant fluid loading
admits a simple description by means of expansions in the intrinsic fluid-loading parameter
� ¼ ðr0=rÞ=ðc0=cBÞ: The coefficients in these expansions are functions of the reduced frequency
O0 ¼ ðoh=cBÞ=ðr0=rBÞ

2: In the dimensionless variables used, the wavelength of the radiated sound
in the water is of order ��2; and the principal scaling laws obtained, for O0 of order one, are as
follows. The near acoustic field, of radius of order ��2; contains within it a much smaller region,
the inner near field, of radius of order ��1; strongly influenced by the plate. The surface wave
propagating next to the plate has wavelength of order ��1; and the penetration distance of this
wave into the fluid is also of order ��1: The radiated acoustic power is of order �: The surface wave
transports fluid kinetic energy at a rate of order ��1; plate bending-wave energy also at a rate of
order ��1; and fluid potential energy at a negligible rate. Thus the total rate of energy transport in
the surface wave, of order ��1; is greater than that in the directly radiated acoustic field by a factor
of order ��2: For all of the above quantities, the paper also gives the coefficient of the stated power
of � as a function of O0: Thus the paper gives simple expressions for all the important physical
quantities relating to the forced vibration of the plate. The expressions are valid not only for O0 of
order one, but also for O0 arbitrarily small, i.e. for heavy fluid loading, because in all the
expansions the limit O0 ! 0 is uniform. Comparison of the exact solutions of the dispersion
relation with the solutions obtained from the dominant balance show that the expressions are
accurate up to a forcing frequency of about half the coincidence frequency. Thus, the range of
validity is approximately Op 1

2 ; or O0p 1
2 �

�2: Since � ¼ 0:134 for steel in water, this gives
approximately O0p28: That this range of validity is far larger than would be expected from a
literal interpretation of ‘O0 is of order one’ is no surprise: it is the normal situation for an
expansion based on a significant scaling. The results in this paper provide a foundation for
scaling-based analyses of further effects, e.g. nonlinearity [14], and scattering at the edge of the
plate, at inhomogeneities, and at supports.
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Appendix A. Numerical integration

In contour integrals with respect to w; a useful alternative variable of integration is a quantity s
satisfying

cosðy� wÞ ¼ 1þ 1
2
is2: ðA:1Þ

Then

w ¼ y� sgnðsÞ cos�1ð1þ 1
2
is2Þ; sinðy� wÞ ¼ e�pi=4sð1þ 1

4
is2Þ1=2; ðA:2a;bÞ
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dw ¼
isds

sinðy� wÞ
¼ e3pi=4ð1þ 1

4
is2Þ�1=2 ds; ðA:3Þ

so that

Psteep ¼ �
i�O0

2p
ei�

2O0R

Z 1

�1

e�
1
2
�2O0Rs2

D0ð�;O0; wÞ
sin w

sinðy� wÞ
sds ðA:4Þ

in which w and sinðy� wÞ are the functions of s given by (Eq. A.2). For y ¼ 0; i.e. along the plate,
(Eq. A.4) gives

Psteep ¼
i�O0

2p
ei�

2O0R

Z 1

�1

e�
1
2�
2O0Rs2sds

1þ epi=4�O0sð1þ
1
4
is2Þ1=2f1� �4O2

0ð1þ
1
2
is2Þ4g

; ðA:5Þ

and for y ¼ 1
2p; i.e. at right angles to the plate, it gives

Psteep ¼
e�pi=4�O0

2p
ei�

2O0R

Z 1

�1

e�
1
2�
2O0Rs2ð1þ 1

2
is2Þð1þ 1

4
is2Þ�1=2 ds

1� i�O0ð1þ
1
2
is2Þf1þ �4O2

0s
4ð1þ 1

4
is2Þ2g

: ðA:6Þ

Integrals (A.4)–(A.6) are well adapted to numerical integration. In addition, the ‘window
function’ e�

1
2�
2O0Rs2 allows the important range of s in the integrals to be determined, so that the

order of magnitude of the integrals may be estimated analytically as a power of � for different
ranges of R. The results are shown schematically in Fig. 6a,b. The significant locations are
R � ��1 and R � ��2; and the orders of magnitude match smoothly. The region R4��2 is the
acoustic far field; the region ��1oRo��2 is the acoustic near field; and the region Ro��1 is the
inner near field. Fig. 6 is invaluable in comparing the orders of magnitude of Psteep and the
individual contributions to Ppoles:
(a) (b)

(c)

Fig. 6. (a, b) Orders of magnitude, as a function of R, of real or imaginary part ~Psteep of Psteep defined by integrals

(A.4)–(A.6) when y ¼ 0; 12 p: (c) As (a), (b), but for the real or imaginary part ~W steep of W steep defined by the integral

(A.7) for y ¼ 0: For a fluid-loaded membrane rather than a plate, compare [13, Fig. 2].
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Inspection of the order of magnitude of Psteep as a function of R in Fig. 6b indicates a range of
R from ��1 to ��2 in which Psteep decays as R�1: This range of R is the acoustic near field, and
Psteep in this range gives the acoustic near-field pressure. The acoustic near-field region is clearly
identifiable in Fig. 1, where it lies between R ’ 10 and 100. The length scale of variation of pole
contributions is ��1; and that of steepest-descent contributions is ��2; except that when R is of
order ��1 or less, i.e. when R is in the inner near field, the length-scale of variation of steepest-
descent contributions is of order ��1:
When y ¼ 0; the steepest-descent integral for the plate displacement, analogous to Eq. (A.5) for

the acoustic pressure, is

W steep ¼
e�pi=4

2p�
ei�

2O0R

Z 1

�1

e�
1
2�
2O0Rs2s2ð1þ 1

4
is2Þ1=2 ds

1þ epi=4�O0sð1þ
1
4
is2Þ1=2f1� �4O2

0ð1þ
1
2
is2Þ4g

: ðA:7Þ

The order of magnitude of Eq. (A.7) as a function of R is shown schematically in Fig. 6c.
Appendix B. The heavy fluid loading limit

Although Eq. (31) has been obtained on the assumption that O0 is of order one, the heavy fluid
loading limit O0 ! 0 is regular, so that Eqs. (30a,b), (31) remain valid when O0 ! 0 and give
correct results for O05�2; i.e. for heavy fluid loading. Thus in Eq. (31a) assume that O051 and
K0 � Oq

0: A dominant balance occurs only for q ¼ 2
5
; in which case the term �O2

0K0 is negligible
and Eq. (31a) reduces to the heavy fluid loading approximation K5

0 ’ 
O2
0: As this equation can

be solved at once for all its complex roots K0; it has been used in earlier investigations [1,2,5]; but
the range of frequencies for which it gives accurate results is narrower than for Eq. (31a), because
it does not balance the maximum number of terms at leading order, i.e. does not correspond to a
significant limit. The non-significant heavy fluid loading approximation K5

0 ’ 
O2
0; valid when

O051; i.e. K051; is equivalent in unscaled variables to K5 ’ �O2; valid when O5�2; i.e K5�: All
results obtainable from this non-significant heavy fluid loading approximation are recovered by
taking the trivial regular limit O0 ! 0 in results for significant fluid loading; but the non-
significant approximation does not determine what happens when O0 is of order one, i.e. when the
fluid loading is significant.
Appendix C. Symmetry of the dispersion relation

The symmetry of the dispersion relation Dð�;O; wÞ ¼ 0; or equivalently D0ð�;O0; wÞ ¼ 0; is such
that, for real O or O0; if w is a root then (with a bar denoting complex conjugate) so are ��w; �wþ p;
and �wþ p: Thus, the roots form groups of four, except that roots with real parts which are
multiples of p form groups of two. The corresponding symmetry in expansion (32) is that if
ðs; w0; w2Þ gives a root then so do ðs;��w0;��w2Þ; ð�s; �w0 þ p; �w2Þ; and ð�s;�w0 þ p;�w2Þ: The
groups in Fig. 2 are ðwu1; wu3; wl3; wl5Þ; ðwu4; wu5; wl1; wl2Þ; and ðwu2; wl4Þ; in which multiples of 2p have
been added or subtracted to return the values of w to the fundamental strip � 1

2 ppwro 3
2 p:
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Appendix D. Cancellation of discontinuities

In the decomposition P ¼ Ppoles þ Psteep the terms Ppoles and Psteep are each discontinuous at
y ¼ yu1; . . . ; yl5; but the total P is continuous, i.e. the discontinuities are equal and opposite and
cancel out. Across the cut-off line OAu2 in Fig. 5a, the discontinuity between zero pressure and the
surface-wave pressure is thus exactly matched by an equal and opposite discontinuity in the
contour integral along CðyÞ as y crosses the value yu2; at which a pole lies exactly on the contour
CðyÞ: Numerically this discontinuity is often smaller in magnitude than one might expect. For
example, Eq. (43) shows that the discontinuity DPu2 in (35) at y ¼ yu2 is

DPu2 ’ �
iO0e

�1
2
�O0Rew0iþi�2O0R

2ð2O0 þ 5e�w0iÞ
: ðD:1Þ

Here the phase variation is represented by ei�
2O0R; and the previous combination �R has been

replaced by �2R; i.e. the phase length-scale has increased from ��1 to ��2: The explanation, from
Fig. 5a, is that the cut-off line OAu2 is inclined at only a small angle, of order �; to the direction of
no phase variation, i.e. OY: The significance of this phase variation along the cut-off line OAu2 is
that the phase term in Psteep is also represented by ei�

2O0R; i.e. the cut-off line OAu2 is obligingly
positioned to make the transition across it as ‘tame’ as possible.
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